FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102430109

Course Title: Sensor Signal Processing

Type of Course: Program Elective II

Course Objectives: To study characteristics of various analog/Digital sensors. To learn signal conditioning techniques for nonlinear and noisy sensors. To study signal processing techniques

Teaching & Examination Scheme:

Contact hours per week			Course Examination Marks (Maximu				mum / Pa	ssing)	
Lastrina	Tutoria	Practica	Credits	Internal		External		Total	
Lecture	l	l		Theory	J/V/P*	Theory	J/V/P*	TULAI	
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150 / 75	

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

	Jeuneu Synabus.					
Sr.	Contents	Hours				
1	Introduction: Sensors and transducers. Understand characteristics of various sensors. Touch, position, displacement, proximity, velocity, motion, integrated circuit based temperature and vibration, humidity, moisture content, solar photovoltaic and accelerometer type of sensors, microphone array and image sensors.	10				
2	Signal conditioning of sensor signals using analog circuits, understanding the need of and design of filters and pre-amplifiers, zero crossing detector and wave-shaping circuits. Design of PWM circuits.	10				
3	Signal conditioning of sensor signal using digital circuits; understand the need of level shifter. Design of Schmitt trigger, counter and shifter circuits, Controller based interfacing system. System with on chip and on device sensors.	14				
4	Case study of design of analog systems and digital systems for various sensors. Introduction to mix-mode controller and design.	08				

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R : Remembering; U : Understanding; A : Application,
R	R U A N E C		С	N: Analyze; E: Evaluate; C: Create		
10%	40%	20%	10%	10%	10%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

-							
	1	Industrial Instrumentation, Padmanabhan, Springer					
	2	Practical Signal Processing, Mark Owen, Cambridge Press					
Ī	3	Wireless Sensor Network: Principles and Pracitce, Fei Hu, X. Cao					

Course Outcomes (CO):

	Course Outcome Statements	%weightage		
CO-1	Understand various sensors and their characteristics	10		
CO-2	Experimentally obtain the characteristics of various sensors and	15		
	transducers			
CO-3	Define appropriate signal conditioning requirements	15		
CO-4	Design analog system for interfacing with sensors			
CO-5	Design digital systems for interfacing with sensors 25			
CO-6	Understand benefit of system on chip architectures for various	10		
	applications			

List of Practical / Tutorials:

1	Design and Implementation of Op-Amp based signal conditioning circuits.					
2	Obtaining characteristics of various sensors such as position, proximity, motion and					
	accelerometer.					
3	Obtaining characteristics of various environmental sensors such as temperature and					
	humidity and moisture content.					
4	Design of analog signal processing circuits using op-amp and specialized integrated circuits					
	for sensors.					
5	Design of digital signal processing circuits using various digital integrated circuits for					
	sensors					
6	Design of complete analog signal processing system for sensors.					
7	Design of complete digital signal processing system for sensors					
8	Low power controller based signal processing techniques for sensors					
9	Mixed- mode controller based signal processing for sensors					
10	A project based on topics learned during the course					
_	0 1 0					

Supplementary learning Material:					
1	Sakshat Virtual Labs, IIT Guwahati				
2	Virtual Labs, IITB				

Curriculum Revision:		
Version:	1	
Drafted on (Month-Year):	Apr-20	
Last Reviewed on (Month-Year):	Jul-20	
Next Review on (Month-Year):	Apr-22	